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Scientific Interpretative Summary
This SIS is prepared by MPI risk assessors to provide context to the following report
for MPI risk managers and external readers.

Standardisation of parameters for pathogen control in food:

D and z values for the heat inactivation of pathogens in raw meat
ESR Report FW 15001

Advice and requirements for thermal treatment times for raw meat are to be found in a
number of MPI documents and have been based on the benchmark and universally
accepted heat treatment parameters in a 1989 publication. This gives a 6D outcome
at a core temperature of 70°C for 2 minutes for L. monocytogenes, derived from
experiments with several matrices (chicken, beef steak and carrot).

This report analysed more recent data sets (1384 values) for raw meat with the intent of
updating information for specific pathogen/meat combinations if appropriate. The
analysis produced a higher 6D value at of 70°C of 2.4 minutes for L. monocytogenes for
all meat types. For Salmonella, the 6D value range at 70°C is 1.8-2.2 minutes
depending on meat types and values for E.coli are appreciably lower at 1.2 minutes for
beef and 1.8 minutes for all meats. This confirms that a process that gives the required
log reduction for L. monocytogenes will give at least the same log reduction for the
other non-sporing pathogens.

At low temperatures the effects of the z value are very pronounced. Using the current
MPI recommendations to achieve a 6D for L. monocytogenes, at 60°C and with z
=7.5°C, the cooking time is 44 minutes. However when applying a z value of 6.25°C, the
cook time is doubled to 91.2 minutes at 60°C.

While the study does not significantly challenge the 70°C for 2 minutes convention used
to achieve a 6D reduction for L. monocytogenes in meat products, it is appropriate to
extend the time to 2.4 minutes as the data used was all meat-based and should
therefore be more relevant than values derived from a range of matrices.

For time/temperature combinations below 55°C, no recommendations can be made
until further research is undertaken.

Where time/temperature combinations (and processing conditions e.g. vacuum packs)
outside the range included in this report are intended to be taken up by by food
processors or MPI, validation studies will need to be undertaken.
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EXECUTIVE SUMMARY

The objective of this project was to provide time-temperature combinations for industry, in
the form of D and z values, for heat processing (cooking) of different meat types for
inactivation of the pathogens: Escherichia coli including E. coli O157:H7 and other Shiga
toxigenic E. coli serotypes, Listeria monocytogenes, Salmonella spp. and Campylobacter
jejuni/coli.

Thermal inactivation data for pathogens in raw meat were located and compiled through
searches of the scientific literature, up to and including October 2014. The D value database
was initially filtered to extract the data which (i) had been determined by experiments
specifically designed to estimate D values and (ii) were determined from the exponential
inactivation phase.

Thermal inactivation can be affected by intrinsic properties of meat (e.g. meat type, fat, pH)
as well as preliminary processing (which may include some heating). Consequently
information on these factors was also collected alongside inactivation data when

available. The proposed methodology, compiled data and supporting information (including
that from a previous ESR project) were discussed with MPI in order to define the scope of
meat types, intrinsic properties of the meat, preliminary and heating processes for which D
and z values could be derived and that were supported by a substantial body of data. Finally
the database was filtered to only include the data which fell within the agreed product scope,
resulting in a data set of 1348 values.

For each pathogen-meat group combination, the reference D values are derived from a
linear regression of the 95" percentile value of the available data at each temperature. This
provides D values which take into account the variability of the heat resistance of pathogens
due to the characteristics of the product and incorporates data from the most heat resistant
strains of pathogens which are those most likely to survive cooking and present a risk of
illness.

The scope of meat types for which D and z values were derived includes:

0] Beef

(i) Poultry
(iii) Pork

(iv) “All Meat”.

In addition to Beef, Poultry and Pork, the “All Meat” category also includes sheep meat,
partially processed raw meat products such as sausages, and products containing a mix of
meat types. Some exclusions to the scope (e.g. for high fat products) are described in
Table 1.

The full dataset included D values ranging from 55°C to 74°C. Inspection of the data
showed that for practical experimental reasons using a meat matrix, there were limited data
above 70°C. Consequently D values in this report are given for meat types, pathogens and
temperatures between 55°C and 70°C. Specifically, D and z values are given for; E. coli in
Beef and “All Meat”, L. monocytogenes in “All Meat”, Salmonella spp. in Beef, Poultry and
“All Meat”. There were insufficient data to provide Pork specific D values for any of the
pathogens, but the Beef D values can be applied to this meat type.
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The exception to the temperature range is L. monocytogenes, for which there were sufficient
data from 70-74°C that a D value up to 75°C could be provided for “All Meat”. As L.
monocytogenes was consistently more heat resistant than the E. coli and Salmonella spp.
across the meat types, this D75 value can also be applied to E. coli and Salmonella spp..

The other exception is for C. jejuni/coli, for which there were insufficient data to derive D and
z values for any meat type. However, C. jejuni/coli are more sensitive to heat than the other
pathogens. Consequently cooking processes that inactivate the other named pathogens
(calculated from D values) will provide at least the same reduction in C. jejuni/coli
concentration.
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1. INTRODUCTION

Raw meat is frequently contaminated with pathogenic bacteria. Cooking the meat will
reduce the risk of illness from pathogens in foods through the heat inactivation of pathogen
cells present while at the same time increasing the palatability and shelf life of the meat.
However the times and temperatures required to achieve these different outcomes may not
be the same. Cooking at too low a temperature or for insufficient time may mean the meat
remains unsafe to be eaten.

Reduction of the pathogen concentration during heating can be defined in terms of D and z
values. Knowledge of D and z values combined with the appropriate target reduction in
pathogen concentration, allows target time-temperature combinations to be defined for the
cooking process.

This report provides D and z values which can be applied to the heating of raw meat and the
scope of the raw meat products the D and z values can be applied to.

1.1 DVALUE

1.1.1 Definition

In general terms, the D value is the time taken for a specific organism at a specified
temperature and in a specified substrate to incur a 90% or 1 logio reduction in its population
as shown in Figure 1.

Figure 1: Dvalue
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1.1.2 Temperature

The specified temperature is the temperature that must be achieved and maintained at the
slowest heating point of the product. The shape and size of the product will determine
where in the product the temperature will need to be monitored. The temperature is given as
a suffix to the D notation. For example Des is the D value at 65°C.
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1.1.3 Pathogens

For the purposes of this report, the D values stated are for the following pathogens;

e Listeria monocytogenes,

e Salmonella spp. and

e Escherichia coli including O157:H7 and other Shiga toxigenic Escherichia coli
(STEC) serotypes

o Campylobacter jejuni and coli

These pathogens were chosen because of their public health significance in the New
Zealand food safety context.

1.1.4 Raw meat products
The specified substrates are the raw meat products which fall within the scope of Table 1.

Table 1: Scope of products applicable to D and z values given in this report
Animal products and Animal products and processing for which
processing for which the D and | the D and z values in this report cannot be
z values in this report can be used without further verification.
used
Meat Types e Raw beef o Fish (insufficient data)
e Raw pork e Seafood (insufficient data)
e Raw lamb / mutton
e Raw poultry
Pre-heating e Intact meat e Heat treatment applied during a
processing or | e Minced fermentation process
formulation e Mechanically tenderised e Preparations which cause the water
e Meat bonding activity to go below 0.95
e Brine injection e Product with a fat content greater than
30%
e Product in which the pH is less than 5
e Heat shocked or sub-lethal heat
treatment before main heat treatment.
Heat Heat treatment using: Processes which involve:
Processing Microwave heating

e \Water
e Steam
e Dry heat

The temperature at the slowest
heating point of the product is
maintainable at a temperature
of 55°C or above.

Smoking

High pressure treatment
Vacuum packing
Anaerobic atmosphere

The temperature at the slowest heating
point of the product stays below 55°C.
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D values vary depending on the characteristics of the food (Table 2) and how the food is
processed prior to heating (Table 3). As a consequence, a set of cooking conditions for one
food may not necessarily be applicable to another. Factors influencing D values are
discussed in more detail by Gilbert et. al. (2011)1. The comments in Table 2 and Table 3
apply to E. coli, L. monocytogenes and Salmonella spp. unless indicated otherwise.

Table 1 above defined the scope of meat products and processes applicable to the D and z
values presented in section 2. Meat products and heating treatments outside this scope
may need less or extra heating time to ensure adequate pathogen reduction. It is not
appropriate to use the D and z values in this report to predict behaviour in food types
other than meat.

Table 2: How food characteristics can influence D values

Factor Influence on D value

Additives Can be utilised to decrease D values.

Atmosphere Anaerobic conditions during heat treatment may increase D
values.

Competition from other | May increase D values by altering the atmosphere, however
bacteria present unlikely in meat unless spoilage has occurred.

Fat Increasing fat concentration may increase thermal stability, but
this may be via a reduction in water activity.

Localised areas of fat may be more protective than product
where fat is uniformly blended throughout product.

pH Optimum survival of Salmonella spp. and E. coli in the pH range
5to 7. Listeria optimum survival close to neural pH.

Lower and higher pH result in decreased D values.
Type of acidulant may not influence D value.

Water activity Decreasing aw tends to increase the D value.

1 Gilbert S, et al. (2011) Background document on factors influencing the heat inactivation of bacteria
in foods. ESR Report FW10045
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Table 3: Examples of how bacteria specific factors prior to cooking can influence Dvalues

Factor

Influence on D value

Heat prior to cooking

Meat subjected to sub-lethal cooking temperatures prior to the
main heating step increases D values.

Acid adaption

May increase D values. Acid adaption can occur with
processing which increases the acidity of the meat product for a
period of time before heating. E.g. using an acidic marinade.

Growth phase of
cells

Heat resistance is greatest in stationary phase cells. Stationary
cells exist in established populations which have a constant
population density. Population density may be limited by
depletion of key nutrients or the accumulation of metabolites.

Pathogen cells may be in the stationary phase on the carcass,
or pre-heating processing may allow enough cell growth for
stationary phase to be reached.

1.2 ZVALUE

The z value is the increase in temperature needed to decrease the D value for a specific
organism in a specific substrate by a factor of 10. A factor of 10 is equivalent to a one log
reduction in the D value (Figure 2).

Figure 2: zvalue
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1.3 MEAT TYPES

For the purposes of this report, meat satisfying the conditions in Table 1 have been
separated into four different categories:

e Beef which is meat from cattle or calves.
e Poultry which is meat from chickens, ducks or turkeys.
e Pork which is meat from pigs.

o “All Meat” — this group includes meat in the beef, poultry and pork groups as well as
other meat types and products which fit into the scope of Table 1. This includes types
of sheep meat and raw products like sausages or products containing a mixture of
meat types. This category incorporates the data from product — pathogen
combinations with insufficient data to define product specific D and z values.
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2. D VALUES

2.1 D VALUE REFERENCE TABLES

This section provides reference tables of D values in minutes by pathogen and meat type. A
description of the method used to determine the D values is given in Appendix A and the
experimental data used for the calculations is graphically presented in Appendix B.

There are insufficient data in the literature to define D values for C. jejuni or C. coli in meat.
However, Campylobacter is more sensitive to heat than L. monocytogenes, Salmonella spp.
and E. coli. Consequently, heat inactivation processes achieving a specified reduction in

concentration for these three pathogens (calculated from D values) will provide at least the
same reduction in C. jejuni or C. coli concentration.

A flowchart is given in Figure 3 to provide guidance on which D and z values should be used

for different meat category / pathogen / target temperature combinations in order to calculate
an appropriate heating process.

20



Figure 3:
combination
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Yes

v

Look up D value
given for L. monocytogenes
in Table 4

No—p»|

Look up D value using the
pathogen / “All Meat” combination
(Tables 4 to 6)
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Table 4 Dvalues for the inactivation of L. monocytogenes

Temperature (°C) Dvalue (minutes)?
“All Meat”
55 95.6
56 66.2
57 45.8
58 31.7
59 21.9
60 15.2
61 10.5
62 7.3
63 5.1
64 3.5
65 2.4
66 1.7
67 1.2
68 0.8
69 0.6
70 0.4
71 0.3
72 0.2
73 0.2
74 0.1
75 0.1

a: D values rounded up to 1 decimal place
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Table 5 D values for the inactivation of Sa/monella spp.

Temperature (°C)

Dvalue (minutes)?

Poultry Beef / Pork “All Meat”
55 47.4 49.2 69.9
56 34.2 34.7 49.3
57 24.7 24.5 34.7
58 17.8 17.3 24.5
59 12.9 12.2 17.2
60 9.3 8.6 12.2
61 6.7 6.1 8.6
62 4.9 4.3 6.1
63 3.5 3.1 4.3
64 2.5 2.2 3.0
65 1.8 1.5 2.1
66 1.3 11 15
67 1.0 0.8 1.1
68 0.7 0.6 0.8
69 0.5 0.4 0.6
70 0.4 0.3 0.4

a: D values rounded up to 1 decimal place
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Table 6 Dvalues for the inactivation of E. coliincluding O157:H7 and other STEC serotypes

Temperature (°C) Dvalue (minutes)?
Beef / Pork “All Meat”
55 33.6 36.3
56 23.9 26.0
57 17.0 18.7
58 12.1 13.4
59 8.6 9.6
60 6.1 6.9
61 4.4 5.0
62 3.1 3.6
63 2.2 2.6
64 1.6 19
65 1.1 1.3
66 0.8 1.0
67 0.6 0.7
68 0.4 0.5
69 0.3 0.4
70 0.2 0.3

a: D values rounded up to 1 decimal place
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2.2 HEAT INACTIVATION TIME-TEMPERATURE COMBINATIONS

2.2.1 Factors in setting a time-temperature combination

To decide on the appropriate time-temperature combination, the following must be
considered:

e The relevant pathogens for the specific meat type as determined by hazard analysis
e The prevalence (frequency and numbers) of the pathogen in the meat.

e The reduction in pathogen concentration that is required. This will depend on factors
such as;
o initial pathogen concentration on the raw product ,
o intended purpose, e.g. immediate consumption, extended shelf life chilled
product , ready to eat product and,
o the final concentration of pathogens required to meet regulatory or operator
defined limits.

o Potential adverse effects on food quality brought about by the heat treatment.

The D value provides the target time at a specific temperature to ensure a 1 logie reduction
in pathogen cells. If a particular log reduction is required, the required time at the target
temperature is calculated by multiplying the D value by the logio reduction required.

2.2.2 Example

Table 7 outlines the time-temperature combinations required to ensure a 6 logio reduction in
pathogen cell count. A 6 logio reduction is given as an example only, however reductions of
5-7 logio are commonly applied. The desired pathogen reduction will depend on the factors
given above.

Table 7: Time — temperature requirements to ensure a 6 log1o reduction in pathogen concentration is

achieved
Time required to achieve 6 logio pathogen reduction
Pathogen Meat at given temperature (minutes)
60°C 65°C 70°C 75°C
E.coli Beef / Pork 36.6 6.6 1.2
“All Meat” 41.4 7.8 1.8
L. monocytogenes “All Meat” 91.2 14.4 24 0.6
Salmonella spp. Beef / Pork 51.6 9.0 1.8
Poultry 55.8 10.8 2.4
“All Meat” 73.2 12.6 2.4
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2.3 DISCUSSION

The quantity and type of experimental data available from the literature determined which
combinations of meat and pathogen type are able to have specified D and z values. Where
there was insufficient data to provide clear evidence for the D and z values for the specific
meat group no values are given in the tables. In total, 1348 data points defined the D and z
values given in the tables, which represent data across a range of pathogen strains, cooking
methods and meat preparations.

D values are not given for target temperatures below 55°C. There are not enough data to
define a D and z relationship and the data that are available do not show the linear
relationship, observed at temperatures of 55°C and above, between logip D and the target
temperature. This may be due to temperatures below 55°C being close to the maximum
observed growth temperatures for the pathogens (45°C for L. monocytogenes to 49°C for
Salmonella spp.?).

There is also very limited data for temperatures above 70°C. The inactivation rate of the
considered pathogens at temperatures above 70°C is high, resulting in D values which are
numbers of seconds. This makes it practically difficult to accurately calculate D values in the
meat food matrix.

The D values listed for L. monocytogenes are higher than the D values given for Salmonella
spp. and E. coli. This may be due to differences in heat resistance of the varieties of
pathogen strains that were available from the literature or due to differences in cell type. In
general Gram-positive cells (L. monocytogenes) are more heat resistant than Gram-negative
(Salmonella spp. and E. coli) due to differences in the cell construction?.

2 http://www.foodsafety.govt.nz/science-risk/hazard-data-sheets/pathogen-data-sheets.htm
3 Adams MR and Moss MO (2000) Food Microbiology: Chapter 4. The Royal Society of Chemistry.
ISBN 0-85404-611-9.
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3. CONCLUSIONS

This report presents D and z values that can be applied to heating meat products in which E.
coli, L. monocytogenes, Salmonella spp. and Campylobacter jejuni/coli may be present.

The characteristics of meat products, e.g. fat content and processing of the product prior to
heating, may influence the thermal inactivation of these pathogens. Hence the D and z
values in this report may only be appropriate, without further verification, to products
identified within the scope of Table 1.

Using data from the literature up to and including October 2014, thermal inactivation data
relating to meat have been extracted. From these data, 1348 points were found to fit the
scope of Table 1 as well as the experimental procedure being appropriate for calculating D
values. The D values for a given temperature were highly variable due to the intrinsic
properties of meat, pathogen strains, cooking and experimental processes.

For each pathogen-meat group combination, the presented D values were derived from a
linear regression of the 95" percentile value of the available data at each temperature. This
approach takes into account the most heat resistant strains which are those most likely to
survive cooking and present a risk of iliness.

Where there is insufficient data to perform a linear regression for a given meat type, the “All
Meat” regression line for the pathogen is used.
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APPENDIX A: METHOD

A.1 DATA COLLECTION AND EXPLORATORY DATA ANALYSIS

Thermal inactivation data of pathogens in meat were collected from the scientific published
literature up to October 2014. When review papers were located, the data were not
considered unless the primary publications containing the relevant data for meat could be
obtained. The references are included in Appendix C.

Only data meeting the conditions below were included in the project:

¢ Raw meat products defined in the scope for this report as given in Table 1.

e Test product was of a form that allowed rapid heating throughout the sample to the
target temperature, such as thin patties or in small glass tubes.

e Test product was held at a constant internal temperature once at the target
temperature.

e Test product that was rapidly cooled after the designated heating time to prevent
further decline in viable cell concentrations.

e Alinear relationship existed between the base 10 logarithm of the cell count and the
time at temperature.

The resulting dataset contained 1348 D values. There were 526 E. coli D values including
418 relating to beef, 448 L. monocytogenes D values and 374 Salmonella spp. D values
including 94 relating to beef and 212 relating to poultry.

The data were collated for each combination of pathogen and meat category and plotted for
visual inspection. Any outlying values were first checked for transcription errors and then
checked to determine possible reasons for the data being inconsistent with other collected
data. Possible reasons include strain-to-strain variability in heat resistance, heating
methodology, cell history prior to heating or choice of enumeration method for the cells
which could be damaged/changed by the heat treatment. No reason was found to exclude
any data in the dataset of 1348 values.

A.2 CALCULATION OF D AND z VALUES

For each combination of pathogen and meat type, the following process was used to
calculate the associated reference D and z value:

1. For each temperature greater or equal to 55°C, which had more than 10 data points, the
95" percentile of the experimental D values was calculated (blue diamonds in Figure 4).

2. Alinear regression of the logarithm of the 95" percentile D values against temperature
was then conducted using least squares fitting in Excel (solid line in Figure 4).

3. z was calculated to two decimal places from the inverse of the slope of the regression
function.

4. A reference D value at 65 °C was calculated (rounding up to one decimal place) from the
linear regression function.

The resulting D and z values are given in Table 8, Table 9 and Table 10
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Figure 4 Data analysis example
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Table 8: Dand zvalues for the inactivation of E. co/iincluding O157:H7 and other STEC serotypes

Temperature (°C)

Meat Category Number of Temperature z Des
Data Points Range (°C) (°C) (minutes)
Beef 418 55-70 6.74 1.1
“All Meat” 526 55-70 6.92 1.3
Table 9: Dand zvalues for the inactivation of L. monocytogenes
Meat Category Number of Temperature z Des
Data Points Range (°C) (°C) (minutes)
“All Meat” 448 55-74 6.25 2.4
Table 10: Dand zvalues for the inactivation of Sa/monella spp.
Meat Category Number of Temperature z Des
Data Points Range (°C) (°C) (minutes)
Beef 94 55-70 6.60 15
Poultry 212 55-70 7.04 1.8
“All Meat” 374 55-70 6.57 2.1
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A.3 CALCULATION OF NON-REFERENCE D VALUES.

A.3.1 Formula

Once a D value at a specific temperature (Drer) and a z value have been established, a D
value at any temperature (T) in the experimental data range can be calculated using the
following relationship.

T— Tref

log1o (D) = log1g (Dres) — (Equation 1)

Z

This relationship should not be extended beyond the range of the experimental data used to
calculate the z value.

In this report, all D values were calculated using a single reference temperature of 65°C.
This temperature was chosen as 65°C is always within the temperature range of the 95™
percentile data used to calculate the z values. A single reference temperature was chosen
through the report to ensure consistency in the calculation of D values at given
temperatures.

A.3.2 Example

To calculate the D value to reduce Salmonella spp. on poultry using a target temperature of
68°C:

i.  From Table 10 extract the reference D value and the z value. Des in poultry is 1.8
minutes and the z value is 7.04°C.

i. Use Equation 1 to calculate the logarithm of the D value,

68 — 65
log1o (Deg) = logqo (1.8) — —or —-0.171.

iii.  Calculate the D value by taking the inverse of the base 10 logarithm,

Dgg = 107%171 = 0.7 minutes = 42 seconds.

A.4 VARIABILITY AND METHOD SELECTION

For each pathogen and meat category combination, plots of logio D value against
temperature are given in Appendix B. The variability observed in these plots for the D values
at a given temperature are due to differences in the design of the studies from which the
data was obtained and include differences in; pathogen strains, meat samples properties,
cooking process and experimental design.

While, processors may be able to reduce the variability in thermal inactivation due to cooking
processes and the characteristics of the meat in their products. The strains of the pathogens
presenting on the raw meat are unlikely to be known before heat treatment commences.
Therefore, it is important to heat products to time temperature combinations which will take
into account the possible variation in D values.
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The D and z values in this report take into account the likely variability of pathogen thermal
inactivation in meat products by using data which includes a range of pathogen strains and
meat sources for each of the pathogens. The variability is incorporated into the calculation
methodology to ensure safety in two ways:

1. For each pathogen/ meat category/ temperature combination the 95™ percentile D value
was calculated. This approach takes into account the most heat resistant strains which
are those most likely to survive cooking and present a risk of iliness.

2. The number of data points for each pathogen/ meat group/ temperature combination was
determined. Only combinations with ten or more data points were used in further
calculations. Ten was chosen to ensure incorporation of data from a range of studies and
from the visual inspection of 95™ percentile points at each temperature compared to the
overall dataset. This approach avoids biasing the regression line towards data points
which do not represent the variability seen in the dataset overall.
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APPENDIX B: DATA PLOTS

This appendix provides plots of the data used to generate the D values in this report for the
meat categories; “All Meat”, Beef, Poultry and Pork. Where appropriate the plot also
indicates the 95" percentile points (solid diamond) at temperatures where there are more
than 10 data points and the points are used in the regression analysis.

The solid line is the linear regression line through the 95™ percentile points when there is
sufficient data to perform the regression. To explore the possibility of having a red meat
category, the pork data is compared to the beef regression line for Escherichia coli and
Salmonella spp.. For other meat categories which did not have sufficient data, D values are
based on the “All Meat” category and the “All Meat” regression line is plotted.

Figure 5: Escherichia coli— Experimental D value data by meat type with the appropriate 95" percentile
linear regression lines.
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Figure 6: Listeria monocytogenes — Experimental D value data by meat type with the appropriate 95
percentile linear regression lines.
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Figure 7: Salmonella spp. — Experimental D value data by meat type with the appropriate 95" percentile
linear regression lines.
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Note: For the “All Meat” category, the regression of 95™ percentile points did not include the
data point at 61°C. Temperatures above and below this value suggested the 95™ percentile
value at 61°C was not consistent with the general trend and so the data point was removed

to avoid biasing the regression line to shorter D times.
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