平成 28 年度 食事由来の化学物質等摂取量推計調査 (概要)

1 目的

化学物質のヒトへのばく露は、食事が主要な経路の一つであると考えられている。近年、食品の安全性についての消費者の関心は高まっており、それは食事中の化学物質についても同様である。化学物質のヒトへの健康影響は、個別の食品中の含有量だけでなく、一日に摂取する総量として評価することも必要である。

そこで、マーケットバスケット方式により、都民の食事を介した化学物質等の一日摂取量を調査した。

2 調査方法

(1) 試料(表1)

マーケットバスケット方式により食事試料を調製し、分析した。

都内で購入した食品(94種類301品目)を「平成26年 東京都民の健康・栄養状況」における「食品群別摂取量」に基づき、食品を13食品群に分類し、通常の食事形態に従い調理し、飲料水を含む計14食品群を試料とした。

(2) 分析対象物質

ア ダイオキシン類(平成10年度から調査開始)

PCDDs 及び PCDFs:17 種、コプラナーPCBs:12 種

- イ PCB (平成17年度から調査開始)
- ウ 重金属

総水銀、メチル水銀、カドミウム (平成 17 年度から調査開始) 鉛 (平成 18 年度から調査開始)

エ 放射性物質(γ線放出核種)(平成23年度から調査開始) 放射性ヨウ素(I-131)、放射性セシウム(Cs-134、Cs-137)

(3) 分析機関

東京都健康安全研究センター

(4) 一日摂取量の推計方法

各食品群ごとの分析値に、「東京都民の健康・栄養状況」の一日摂取量に基づきサンプリングし、調理した後の重量を乗じる。その値を 14 食品群すべて合計し、一日当たりの摂取量を求めた。また、大人の体重を 50kg とした場合の体重 1 kg 当たりの一日摂取量を求めた。

なお、放射性物質(γ線放出核種)については、一日摂取量から年間の摂取量を求め、国際放射線防護委員会(ICRP)による成人の実効線量係数を乗じて年間放射線量(年間の食品摂取による預託実効線量)を求めた。

検出下限値未満の場合は、ゼロとして計算している。

3 結果及び考察

(1) 分析結果(表2、3)

ア ダイオキシン類

14 食品群中、「米類」及び「嗜好飲料」を除く 12 食品群から検出された。体重 1 kg 当たりの一日摂取量は 0.50pg-TEQ/kg・bw/day であった。都民の一日摂取量はこれまで同様、「ダ

イオキシン類対策特別措置法」における耐容一日摂取量(4 pg-TEQ/kg · bw/day)を下回った。ダイオキシン類摂取量に占めるコプラナー P C B s の摂取割合は、70%であった(WHO-2006 TEF を使用)。

イ PCB

「油脂類」及び「魚介類」から検出された。体重 1 kg 当たりの一日摂取量は $0.0068 \mu \text{ g/kg·bw/day}$ であり、旧厚生省通知「食品中に残留する P C B の規制について」における暫定 一日摂取許容量(PADI: $5 \mu \text{ g/kg·bw/day}$)を下回った。

ウ 総水銀及びメチル水銀

「魚介類」及び「肉・卵類」の2食品群から検出された。体重 1kg 当たりの一日摂取量は総水銀、メチル水銀ともに各 $0.16 \mu g/kg \cdot bw/day$ であった。メチル水銀については食品安全委員会で示された耐容週間摂取量 $(TWI: 2 \mu g/kg \cdot bw/week)$ を下回った。

エ カドミウム

14 食品群中、9 食品群から検出された。体重 1kg 当たりの一日摂取量は $0.26\,\mu\,\mathrm{g/kg \cdot bw/day}$ であり、食品安全委員会で示された耐容週間摂取量(TWI: $7\,\mu\,\mathrm{g/kg \cdot bw/week}$)を下回った。

才 鉛

14 食品群中、9 食品群から検出され、体重 1kg 当たりの一日摂取量は $0.082\,\mu\,\mathrm{g/kg \cdot bw/day}$ であった。

カ 放射性物質 (γ線放出核種)

放射性ヨウ素(I-131)及び放射性セシウム(Cs-134)は検出されなかった。

放射性セシウム (Cs-137) は、14 食品群中、6 食品群から検出され、年間放射線量は、0.00021~mSv/year であり、食品中の放射性セシウムから受ける年間放射線量は、現行基準値の設定根拠である 1~mSv/year の 0.1%以下であった。

(2) 考察

今回の調査では、都民の摂取量は国等による基準等が示されている物質においてはこの値を下回っていた。総摂取量に対する寄与率が最も高率であった食品群は、物質別に、ダイオキシン類、PCB、総水銀、メチル水銀ではいずれも「魚介類」、カドミウムでは「米・米加工品」、鉛では「その他の野菜・きのこ・海藻類」であった。

4 まとめ

都民が平均的な食事を介して摂取する化学物質等の量については、ヒトへの健康影響が懸念されるレベルにないことが明らかになった。ヒトへの健康被害を未然に防止する観点から、今後も食事由来の化学物質等摂取量推計調査を継続し、食事からの化学物質等摂取状況の把握に努めていく。

表1 マーケットバスケット方式の食品群別分類表

食品群	食品の種類	食品群	食品の種類
第1群	米・米加工品	第8群	その他の野菜・きのこ・海草類
第2群	その他穀類・種実類・いも類	第9群	嗜好飲料
第3群	砂糖類・甘味料類・菓子類	第10群	魚介類
第4群	油脂類	第11群	肉・卵類
第5群	豆類	第12群	乳類
第6群	果実類	第13群	調味料
第7群	緑黄色野菜	第14群	飲料水

表2 ダイオキシン類、PCB、重金属の分析結果(大人・一日・体重1kg当たり)

分析対象物質	一日摂取量
ダイオキシン類	0.50 (pg-TEQ/kg·bw/day)
РСВ	0.0068 (μg/kg•bw/day)
総水銀	0.16 (μg/kg·bw/day)
メチル水銀	0.16 (μg/kg·bw/day)
カドミウム	0.26 (μg/kg·bw/day)
鉛	0.082 (μg/kg·bw/day)

表3 放射性物質(γ線放出核種)分析結果(年間放射線量)

分析対象物質	年間放射線量 (mSv/year)
放射性ヨウ素(I-131)	全ての食品群で不検出
放射性セシウム(Cs-134、 Cs-137 の合計)	0.00021
(Cs-134)	全ての食品群で不検出
(Cs-137)	0.00021

表 4 耐容摂取量等及び評価機関等

分析項目	耐容摂取量等		
ダイオキシン類	TDI 4	pg-TEQ/kg·bw/day	ダイオキシン類対策特別措置法
РСВ	PADI 5	μg/kg·bw/day	厚生省通知 昭和47年8月24日付環食第442号 「食品中に残留するPCBの規制について」
総水銀		_	_
メチル水銀 (Hg として)	TWI 2	μg/kg·bw/week	食品安全委員会通知 平成 17 年 8 月 4 日付 府食第 762 号
カドミウム	TWI 7	μ g/kg·bw/week	食品安全委員会通知 平成 21 年 8 月 20 日付 府食第 789 号
鉛		_	_

TDI:耐容一日摂取量、PADI:暫定一日摂取許容量、TWI:耐容週間摂取量

<用語説明>

用語	
ガノナモニハン海	ポリ塩化ジベンゾパラジオキシン(PCDD)、ポリ塩化ジベンゾフラン(P
ダイオキシン類	CDF)及びコプラナーPCB(Co-PCB)の総称
コプラナーPCB	PCDDとPCDFと類似した生理作用を示す一群のPCB類
РСВ	ポリ塩化ビフェニルの略
pg (ピコグラム)	1 兆分の 1 グラム (1 g=10 ¹² pg)
ng (ナノグラム)	10 億分の 1 グラム(1 g=10 ⁹ ng)
μg(マイクロク゛ラム)	100 万分の 1 グラム (1 g=10 ⁶ μ g)
kg•bw/day	一日当たり体重1kg 当たりの量
kg•bw/week	一週間当たり体重1kg 当たりの量
TEQ	毒性等価係数(最も毒性の強い 2,3,7,8-TCDDの毒性を1として、他の
(毒性等量)	ダイオキシン類の仲間のそれぞれの毒性の強さを換算した係数)を用いて、
(毋江守里)	ダイオキシン類の毒性を総計した値を示す単位
	広範囲の食品を小売店等で購入し、必要に応じて摂食する状態に加工・調理し
マーケットバスケット方式	た後、分析し、食品ごとの化学物質等の平均含有濃度を算出する。これに、都
1 1/1/ //////	民におけるこの食品群の平均的な消費量を乗じることにより、化学物質等の平
	均的な摂取量を推定する。
一日摂取許容量	人がある物質の一定量を一生涯にわたり摂取しつづけても、健康への悪影響が
77,77,77	ないとされる一日当たりの摂取量
	ダイオキシン類など、意図的に使用されていないにもかかわらず、食品に存在
耐容一日摂取量、	したり、食品を汚染したりする物質に設定される。
耐容週間摂取量	人がある物質の一定量を一生涯にわたり摂取しつづけても、健康への悪影響が
	ないとされる一日(一週間)当たりの摂取量。
	核分裂によって生成される人工放射性物質。主なものにヨウ素 131 (I-131) が あり、物理学的半減期は 8 日。甲状腺に蓄積されやすく、核実験や原子炉事故
放射性ヨウ素	めり、物理子的干減期は 0 日。甲状腺に蓄積されやりへ、核美腺や原子炉争成 などで環境に最も多く放出されるため、環境放射線モニタリングにおいて重要
	なこと、現場に取り多く放山されるため、、環境放射線と一クサングにおいて重要しな核種となる。
	放射性物質としてのセシウムは 11 種類。セシウム 134(Cs-134)、セシウム
	137 (Cs-137) は人工放射性物質で、核分裂等によって生成し、物理学的半減期
放射性セシウム	はそれぞれ2年と30年。体内に残存する際、特定の臓器に蓄積する傾向はな
	V ₀
	Bq (ベクレル) から Sv (シーベルト) に換算する係数。核種(放射性物質の種
実効線量係数	類)、化学形、摂取経路別に国際放射線防護委員会 (ICRP) などで示されてい
	る。
	放射性物質の量が初期量から半分になる時間。崩壊により減少する物理的半減
半減期	期と、体内に取り込まれた放射性物質が排泄などによって減少する生物的半減
	期がある。
Bq(ベクレル)	1Bq は1秒間に1個の原子核が崩壊して放射線を出す放射能の量
Sv (シーベルト)	人間が放射線を受けた場合の影響度を示す共通の単位